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a b s t r a c t 

Background and objective: Dementia refers to the loss of memory and other cognitive abilities. 

Alzheimer’s disease (AD), which patients eventually die from, is the most common cause of dementia. 

In USA, %60 to %80 of dementia cases, are caused by AD. An estimate of 5.2 million people from all age 

groups have been diagnosed with AD in 2014. Mild cognitive impairment (MCI) is a preliminary stage of 

dementia with noticeable changes in patient’s cognitive abilities. Individuals, who bear MCI symptoms, 

are prone to developing AD. Therefore, identification of MCI patients is very critical for a plausible treat- 

ment before it reaches to AD, the irreversible stage of this neurodegenerative disease. 

Methods: Development of machine learning algorithms have recently gained a significant pace in early 

diagnosis of Alzheimer’s disease (AD). In this study, a (2 + 1)D convolutional neural network (CNN) ar- 

chitecture has been proposed to distinguish mild cognitive impairment (MCI) from AD, based on struc- 

tural magnetic resonance imaging (MRI). MRI scans of AD and MCI subjects were procured from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. 507 scans of 223 AD patients and 507 scans 

of 204 MCI patients were obtained for the computational experiments. 

Results: The outcome and robustness of 2D convolutions, 3D convolutions and (2 + 1)D convolutions were 

compared. The CNN algorithms incorporated 2 to 6 convolutional layers, depending on the architecture, 

followed by 4 pooling layers and 3 fully connected layers. (2 + 1)D convolutional neural network model 

resulted in the best classification performance with 85% auc score, in addition to an almost two times 

faster convergence compared to classical 3D CNN methods. 

Conclusions: Application of (2 + 1)D CNN algorithm to large datasets and deeper neural network mod- 

els can provide a significant advantage in speed, due to its architecture handling images in spatial and 

temporal dimensions separately. 

© 2022 Published by Elsevier B.V. 
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. Introduction 

Dementia entails reduction in mental abilities affecting the 

aily life of a patient. Damaged or destroyed neurons in certain 

egions of the brain associated with cognitive abilities ultimately 

eads to dementia. Alzheimer’s disease (AD) is the most common 

ause of dementia and its most important symptoms are impaired 

ommunication, disorientation, confusion, poor judgment, behav- 

oral changes, and eventually difficulties with visible motor func- 

ions such as speaking, swallowing, and walking [1] . AD eventu- 

lly leads to death of the patient. Mild cognitive impairment is 

 syndrome due to several reasons among which an underlying 

eason is sometimes the Alzheimer’s disease. Although the fam- 
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ly, friends, and the MCI patients themselves are affected, MCI pa- 

ients can sometimes maintain their autonomy. AD is not always 

asy to predict based on MCI symptoms of cognitive changes or 

ild cognitive dysfunction because, the patient histories are not 

lways explicit or lower cognitive ability may be normal. All MCI 

atients have similar symptomatology but some of them tend to 

urn into mild dementia and ultimately AD. Therefore, identifica- 

ion of MCI patient is very critical for a plausible treatment before 

t reaches to AD, the irreversible stage of this neurodegenerative 

isease. Medical imaging plays a significant role in early diagnosis 

f AD or other types of dementia. Several machine learning meth- 

ds have been proposed to assist the diagnostics of dementia from 

tructural brain MRI, by helping to be more specific with respect 

o brain damage, differential diagnosis and the specific disease pat- 
erns. 

https://doi.org/10.1016/j.cmpb.2022.106825
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2022.106825&domain=pdf
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Although there has been some progress in AD classification 

ith classical machine learning algorithms, selecting hand crafted 

eatures has been challenging [2] . Therefore, recent approaches in 

D classification have been towards implementing deep learning 

ethods, such as autoencoders or convolutional neural networks 

CNN). A sparse autoencoder followed by a 2D CNN was applied 

o specific classifications of AD, HC and MCI [3] . Moreover, a 3D 

NN convolutional autoencoder was applied to diagnose AD vs MCI 

s NC, and their binary combinations [4] . Although CNN was ap- 

lied to classify stable MCI (sMCI), converted MCI (cMCI) and AD, 

ow accuracies were obtained for AD vs cMCI and MCI vs sMCI 

lassifications [5] . In another study, sMRI and functional positron 

mission tomography (PET) images were first segmented into de- 

criptive small overlapping patches and then cross-combined be- 

ore getting fed into a cascade 3D plus 2D CNN algorithm in classi- 

cation of AD vs NC and progressive (pMCI) vs NC subjects [6] . Ad-

itionally, automatic identification of patch and region level spatial 

elationships in a hierarchical fully convolutional network (H-FCN) 

as proposed for AD vs NC and pMCI vs sMCI classifications [7] . 

oreover, principal component analysis (PCA) and Lasso analysis 

f CNN features extracted from MRI patches, which were concate- 

ated into a three channel RGB image to compose a colorful patch, 

as used for prediction of MCI to AD conversion [8] . More re- 

ently, CNN with dual learning and an ad hoc layer for 3D separa- 

le convolutions was proposed to classify sMCI, pMCI, and AD ver- 

us healthy control (HC) subjects [9] . Additionally, random forest 

eature selection followed by deep neural network classification re- 

ulted in a better performance for MCI vs cMCI classification, while 

 fuzzy model was more precise with AD versus HC classification 

10] . More recently, a spectral graph CNN was designed incorporat- 

ng cortical geometry for improved classification of CN vs. AD, early 

CI (EMCI) vs. AD, CN vs. late MCI (LMCI), LMCI vs. AD, EMCI vs. 

MCI, and CN vs. EMCI [11] . Later, long short term memory (LSTM) 

nits were employed to capture the temporal dynamics for LMCI 

s EMCI and AD vs NC classification [12] . DeepAd was proposed 

o diagnose AD [13] , where LeNet [14] and GoogleNet [15] were 

mplemented on sMRI and fMRI for AD versus NC classification. Fi- 

ally, 3D subject level CNN, 3D ROI based CNN and 2D sliced based 

NN was compared. Moreover, significance of data leakage was ex- 

mined [16] . 

In this study, three different CNN architectures, including 

D, 3D and a spatio-temporal (2 + 1)D CNN model, were imple- 

ented for binary classification of AD and MCI using sMRI data 

btained from the Alzheimer’s Disease Neuroimaging Initiative 

ADNI) database, and their performances were compared in terms 

f auc score. Using spatio-temporal (2 + 1)D convolutional neural 

etwork will be valuable for several reasons. For one, this new 

odel will result in comperable accuracy rate with previous ap- 

roaches. In addition, spatio temporal convolutions will be more 

obust than 3D convolutional neural networks. 

. Methods 

.1. ADNI dataset and preprocessing 

MRI image scans for both AD and MCI subjects were procured 

rom ADNI database [adni.loni.usc.edu]. 3D T1-weighted MPRAGE 

mages were used (TR = 2s, TE = 2.6ms, 256 × 256 matrix, 160 slices, 

.2 mm slice thickness). Although ADNI database incorporates 

uch higher number of scans for MCI subjects, 507 scans of 223 

D patients and 507 scans of 204 MCI patients were selected, to 

void any possible imbalance in computational experiments. AD 

atients were diagnosed as AD and stayed stable during the follow- 

p. MCI patients were diagnosed as MCI, EMCI or LMCI and did 

ot encounter multiple reversions and conversions and did not 

onvert back to AD. For preprocessing, The N4ITK method was 
2

sed for bias field correction [17] . Next, a linear (affine) registra- 

ion was performed using the SyN algorithm from ANTs [18] to 

egister each image to the MNI space [19] (ICBM 2009c nonlin- 

ar symmetric template). After pre-processing, MRI data was com- 

osed of evenly spaced 229 slices with a 193 × 193 in-plane 

mage dimensions. The dataset then resized into 32 × 32 × 32 

imensions. 

A 5-fold split was performed only once for all experiments; 

hus, the same subjects were utilized for such assessments. 15% 

f the data was split as test set at the very beginning. The test set

as reserved until the end of the train/validation process and it 

as used for calculating the auc scores only. The remaining data 

as allocated for 5-fold cross validation. 

.2. Convolutional neural networks 

CNN is one of the most prominent applications in deep learn- 

ng, inspired from the brain’s visual cortex. It involves four ma- 

or image plane manipulations: convolutional, pooling, flattening 

nd full connection layers. Typically, it starts with a few convo- 

utional layers, followed by a pooling layer, then another convolu- 

ional layer and pooling before connection to the terminal output 

ayer. Flattening layer converts all the images into a single long 

ontinuous linear vector. Finally, there is a final fully connected 

ayer that outputs the prediction. CNNs are widely used in im- 

ge recognition applications with several distinct models been de- 

eloped, such as Lenet-5 [14] , Alexnet [20] , GoogleNet [15] , and 

queezeNet [21] architectures. In this study three different CNN 

pproaches were compared. 

.2.1. Convolution on sequence of NIFTI images 

NIFTI file format was not appropriate for directly feeding into 

ensorflow, therefore the data was converted into tf.record format 

or storing sequence of binary records. By using the tf.record, se- 

uences of 2D axial image inputs were handled in a shape incorpo- 

ating multiple channels, batch size, sequence length, image height, 

nd image width. In our first experiment we applied 2D convo- 

utions to the entire clip by ignoring the sequence length. In the 

econd experiment, we applied 3D convolutions to whole image 

idth, image height and sequence length dimensions. After con- 

erting to tf.record, the images possessed sequence length, image 

idth and image height dimensions. Initially 2D CNN was applied 

sing kernel size; (1, kernel_size, kernel_size). Afterwards, direct 

D CNN was applied incorporating the sequence with (kernel_size, 

ernel_size, kernel_size) dimensions. 

In a recent study on spatio-temporal convolutions for action 

ecognition, it was emphasized that 3D convolutional neural net- 

orks might not be appropriate for video understanding, propos- 

ng (2 + 1)D convolutional neural networks as an alternative solu- 

ion [22] . (2 + 1)D convolutions splits the computation into 2 opera- 

ions, in which, 2D convolution generates spatial features, while 1D 

onvolution handles temporal features. Handling 3D CNN in tem- 

oral and spatial dimensions might significantly reduce the train- 

ng time. As a final approach, (2 + 1)D convolutions were applied to 

he data increasing the speed of the training by a factor of two, 

ossibly, due to decomposition of 3D convolution into a 2D con- 

olution followed by a 1D convolution operation by the proposed 

ethod. 

Neural network models were developed in Python program- 

ing language, using Keras library with Tensorflow 1.13.1 backend. 

he hyper-parameters were tuned as, Adam optimizer with 0.001 

earning rate, fully connected layers with 0.4 dropout rate and a 

atch size of 32. For evaluating the performance of the model, bi- 

ary accuracy and loss values were considered. Accuracy was de- 

ned as the percentage of the correctly classified images and the 

oss function was designated as a measure of binary cross-entropy. 
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Fig. 1. Illustration of (2 + 1)D convolutions. a) 3D Convolution with filter size t x s 

x s where t is temporal extend, s is spatial width and height. b) (2 + 1)D Convo- 

lution where 3D convolution splits into a 2D (spatial) convolution, followed by 1D 

(temporal) convolution. 
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 5-fold cross validation was performed. 20% of the data used for 

alidation and the rest is used for training. A 5-fold split is per- 

ormed only once for all experiments; thus the same subjects were 

sed for all experiments. Reduce on plateau method was applied 

hen the loss value did not decrease within a period of 10 epochs. 

n addition, early stopping was applied after repeated measure- 

ents of loss which indicates a stagnation for a number of 20 

pochs. 

The performance of the CNNs is usually expected to improve 

ith the size of the dataset. Accordingly, the diversity of the train- 

ng dataset was increased by augmentation with incorporating ran- 

om rotations between 0-10 degrees, brightness adjustment be- 

ween 0-5, zoom-in-out between 0-0.1, and adding Gaussian noise 

nto the MR images. A similar model was used for all experiments 

ith a different kernel size for 2D, 3D and (2 + 1)D methods as de-

cribed in the following sections. 
Fig. 2. Sequence ba

3 
. Results 

.1. Sequence based 2D CNN 

In order to handle 3D images, they were first converted into 

f.records and sequences of 2D images were obtained correspond- 

ng to each brain scan in NIFTI format initially. The input data 

hape was in sequence_length, img_height, img_width dimensions. 

In this approach, 2D convolutions were applied to the entire 

lip by ignoring the sequence length ( Fig. 2 ). This has been ac- 

omplished by applying 1 × 3 × 3 sized kernels to 3D CNN 

 Fig. 2 ), which implicitly ignores the sequence length. The network 

rchitecture involves 1 consecutive functional subunit with a set 

f 2 convolutional layers in each, applying 6 16, filters, respec- 

ively. Each functional subunit includes a max pooling layer with 

 (1 × 2 × 2) sized kernels ( Fig. 2 ) followed by a 0.4 dropout

ate. Final dimensions before flattening were 32 × 8 × 8 × 16. 

he first and the second fully connected layers incorporated 120 

nd 84 units, respectively. This model has 3,945,677 numbers of 

rainable parameters. 

This model resulted in 0.5 + /-0.012 average validation loss, 

validation loss per fold: [0.51,0.5,0.49,05.,0.53]) and in 0.77 + /- 

.033 average validation accuracy, (validation accuracy per fold: 

0.79,0.73,0.80,0.73,0.71]) and in 0.84 + /-0.038 average auc score, 

auc score per fold: [0.85,0.85,0.77,0.88.,0.87]). 

.2. Sequence based 3D CNN 

In this approach, 3D CNNs application was carried out over the 

ntire sequence of 2D images. 3D CNN preserves temporal infor- 

ation and propagates this information into the layers of the net- 

ork [7] . 

The network architecture included 2 functional subunits each 

ith 1 set of convolutional layers consisting of 6, 16 filters, re- 

pectively ( Fig. 3 ). Each functional subunit included a max pooling 

ayer with a kernel size of (2 × 2 × 2) ( Fig. 3 ). The first and the

econd fully connected layers possessed 120 and 84 units, respec- 

ively. Dropout with a 0.4 rate was added after pooling layers. Fi- 

al data format before flattening had (8 × 8 × 8 × 16) dimensions. 

he first and the second fully connected layers possessed 120 and 

4 units, respectively. This model has 1,006,757 numbers of train- 

ble parameters. 
sed 2D CNN. 
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Fig. 3. Sequence based 3D CNN. 

Fig. 4. Sequence based (2 + 1)D CNN. 
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Performing convolutions over the whole sequence resulted in 

.56 + /-0.047 average validation loss, (validation loss per fold: 

0.53,0.66,0.56,056.,0.53]) and in 0.7 + /-0.058 average validation 

ccuracy, (validation accuracy per fold: [0.79,0.66,0.62,0.73,0.71]) 

nd in 0.81 + /-0.087 average auc score, (auc score per fold: 

0.87,0.65,0.80,088.,0.86]). 

Interpretation of the whole sequence length did not improve 

he progression of learning. Although training of 3D CNN took a 

onger time compared to 2D CNN, accuracy and auc score values 

D CNN was higher, which indicates the lack of 3D CNN in the 

mprovement of temporal features [22] . 

.3. Sequence based (2 + 1)D CNN 

Full 3D convolutions were approximated by a 2D convolution 

ollowed by a 1D convolution [22] . To perform this type of de- 

omposition, 2D (spatial) convolutional filters were resized to (1 

 kernel_size x kernel_size) and a 1D (temporal) convolution in a 

odified dimension (kernel_size x 1 × 1). This spatio-temporal de- 

omposition can be applied to any 3D convolutional layer. 

(2 + 1)D network architecture consists of 4 major subunits each 

ith 6 convolutional layers and a single max pooling layer ( Fig. 4 ).

ropout with a 0.4 rate was added after pooling layers. Final data 

ormat before flattening had (8 × 8 × 8 × 16) dimensions. The first 
4 
nd the second fully connected layers possessed 120 and 84 units, 

espectively. This model has 998,083numbers of trainable parame- 

ers. 

Deep learning of the data using (2 + 1)D model resulted in 

 0.47 + /-0.033 average validation loss, (validation loss per fold: 

0.51,0.51,0.46,0.48,0.42]) and in 0.78 + /-0.032 average validation 

ccuracy, (validation accuracy per fold: [0.74,0.79,0.78,0.84.,0.78]) 

nd in 0.85 + /-0.046 average auc score, (auc score per fold: 

0.86,0.94,0.86,0.80.,0.83]). When different approaches employed in 

his study were compared, (2 + 1)D method demonstrated the best 

uc score with comparable accuracy values and a less amount of 

arameters ( Table 1 ). 

Considering the minimal preprocessing and subject level data 

plit, the proposed model performed comparably well to the re- 

ent studies for similar classification problems ( Table 2 ). Although 

he previous studies did not mention speed values, considering the 

odels including 3D CNN, the proposed (2 + 1)D model offers a 

uch faster iteration. 

. Discussions 

Alzheimer’s disease is a debilitating neurodegenerative disorder 

f the central nervous system with a growing economic and social 

mpact in today’s aging population. MCI is one of the risk factors 
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Table 1 

A comparision of different approaches employed in this study. 

Model AUC Scores Validation Accuracy Number of Parameters 

Sequential 2D CNN 0.84 + /-0.038 0.77 + /-0.033 3,945,677 

Sequential 3D CNN 0.81 + /-0.087 0.7 + /-0.058 1,006,757 

Sequential (2 + 1)D CNN 0.85 + /-0.046 0.78 + /-0.032 998,083 

Table 2 

A comparision with current literature results. 

Author Modalities Method Classification Accuracy 

Gupta [3] MRI SAE + 2D CNN AD-MCI 88.10% 

Hosseini-Asl [4] MRI AE + 3D CNN AD-MCI 95% 

Payan [23] MRI SAE + 3D CNN AD-MCI 86.8% 

Sarraf [13] MRI 2D CNN AD-CN 98.84% 

Sarraf [13] FMRI 2D CNN AD-CN 96.86% 

Islam [24] MRI 2D CNN AD-MCI 93% 

Bäckström [2] MRI 3D CNN AD-NC 98.74% 

Present work MRI (2 + 1)D CNN AD-MCI 78% 
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or developing dementia later in life, and there has been several 

tudies for identifying MCI for possibly slowing down its progres- 

ion into dementia. The purpose of this study was to employ dif- 

erent CNN architectures, including a spatio-temporal (2 + 1)D CNN 

odel, to classify AD vs MCI. Our results indicated that (2 + 1)D 

NN model resulted in a high classification accuracy and auc score 

ith a shorter training time than a 3D CNN approach. 

There have been several studies for MCI and AD classifica- 

ion using classical machine learning approaches. Feature extrac- 

ion methods combined with classical machine learning methods 

nd recent implementations of deep learning methods often re- 

ealed lower success rates for AD vs MCI classification problems. 

igher performance metrics were usually possible for distinguish- 

ng AD patients from HC subjects. On the other hand, the accuracy 

alues were lower for the identification of progressive MCI (pMCI) 

ases. 

.1. Deep learning based methods 

Application of CNNs have resulted in slightly better accuracy 

alues than the classical machine learning methods, not to men- 

ion the advantage of minimal preprocessing and hence the col- 

ateral benefit of utilizing the inherent features of the raw image 

nformation. The use of CNN to classify AD vs HC and AD vs MCI 

esulted in 99% and 75% success rates, respectively [5] . Addition- 

lly, structural MRI combined with positron emission tomography 

PET) images evaluated in a cascade 3D plus 2D CNN algorithm in- 

icated a 93.26% success for AD vs. NC and 82.95% for progressive 

MCI) vs. NC classification [7] . Moreover, identification of patch 

nd regional relationship in a hierarchical fully convolutional net- 

ork (H-FCN) classified AD vs NC and pMCI vs sMCI with 90% and 

0.9% rates, respectively [7] . On the other hand, principal compo- 

ent analysis (PCA) and Lasso analysis of CNN features predicted 

CI to AD conversion with a 79.9% success rate [8] . Additionally, a 

ual learning based CNN and an ad hoc layer in 3D separable con- 

olutions resulted in 72% accuracy for sMCI vs pMCI classification 

9] . 

While independent treatment of MRI and PET data in a two 

tack deep polynomial network (SPDN) predicted MCI vs NC with 

 87.24% success rate, the same study reported 97.13% accuracy for 

D vs NC classification [ 25 ]. On the other hand, random forest fea-

ure selection combined with deep neural network classified MCI 

s. cMCI with %51.2 accuracy, while the fuzzy model performed 

8.6% accuracy for AD vs HC classification [10] . On the other hand, 

 study using cortical geometry incorporated into a spectral graph 
5 
eural network reported lower classification accuracies of 85.8% for 

N vs. AD, 79.2% for early MCI (EMCI) vs. AD, 69.3% for CN vs. late

CI (LMCI), 65.2% for LMCI vs. AD, 60.9% for EMCI vs. LMCI, and 

1.8% for CN vs. EMCI [11] . Additionally, temporal dynamics cap- 

ured by long short term memory (LSTM) units revealed 79.36% 

nd 90.28% classification accuracies for LMCI vs EMCI and AD vs 

C groups [12] . 

The combination of CNN and autoencoders have also been re- 

orted in the literature. A 3D CNN convolutional autoencoder was 

ble to diagnose AD vs MCI vs NC, AD vs NC, AD vs MCI, and MCI

s NC with 89.1%, 97.6%, 95% and 90% success rates [4] . Sparse au-

oencoder combined with a 2D CNN resulted in performance mea- 

ures of 94.74% for AD vs HC, 86.35% for MCI vs HC, 88.10% for AD

s MCI and 85% for AD vs MCI vs HC [3] . LeNet and GoogleNet ap-

lied to sMRI and fMRI [13] resulted in a 98.84% performance for 

D versus NC classification. 

.2. (2 + 1)D CNN method 

Conversion of NIFT images into tf.records allowed the handling 

f 3D MR images as sequences of 2D images all compiled into 

ne single labelled data. Interpretation of 3D images as 2D im- 

ge frames of a video stream resulted in a significant improvement 

ith classification indices, despite, the fact that the training time 

eeded for the new model increased by a factor of 2. Decompos- 

ng images into spatial and temporal dimensions in (2 + 1)D CNN 

rovided a more plausible method for video understanding yield- 

ng 85.8% auc score for classification of AC versus MCI subjects. The 

raining was as rapid as 2D CNN and the result has improved sig- 

ificantly. 

.3. Comparison with literature 

Considered minimal preprocessing and a small convolutional 

eural network architecture, the proposed spatio-temporal CNN 

odel achieved a high accuracy rate. Gupta et al. used sparse au- 

oencoder (SAE) followed by a 2D CNN to classify AD and MCI and 

ad 88.10% test accuracy [3] . Hosseini et al. proposed an adaption 

f 3D CNN (3D ACNN), where 3D convolutional autoencoder (CAE) 

as used for pretraining followed by 3D CNN for classification that 

esulted in 95% accuracy [4] . Payan et al. used 3D sparse autoen- 

oders for pretraining, followed by 3D CNN and had 86.84% test 

ccuracy for AD vs MCI classification [23] . Islam et al. used 2D 

NN for AD-MCI classification and had 93% accuracy [24] . In ad- 

ition, although the previous studies did not mention speed val- 

es, compared to the models including 3D CNN, the (2 + 1)D model 

roposed here offered a faster solution [24] . With more data and 

eeper neural networks, the training speed will be more impor- 

ant in future studies. Application of the method to complex deep 

eural network problems is expected to result in higher validation 

ccuracy and higher auc score, and a faster training period, which 

ould be considered as a future study. 

The experimental studies were conducted on a workstation 

ith 32 GB RAM. It has not been possible to fine tune the hyper- 

arameters such as filter sizes and batch size, due to out of mem- 

ry errors. It could have been possible to obtain much better per- 

ormance measures with a deeper CNN architecture. 
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. Conclusions 

In this study, 3D MR images were assessed as a whole sequence 

f slices by converting them to tf.record followed by the appli- 

ation of 2D, 3D and (2 + 1)D CNN algorithms. (2 + 1)D CNN per-

ormance was superior in terms of accuracy and auc score, while 

ttaining the training results in a shorter period of time. Specif- 

cally, compared to 3D CNN, the training was accomplished two 

imes faster with a slightly better accuracy, due to handling of im- 

ges in separate spatial and temporal dimensions. The advantage 

f (2 + 1)D CNN algorithm is expected to be even more evident for 

andling larger datasets. 

In this experimental work, the proposed amount of layers with 

 minimum batch size of 32 was attained due to computational 

imitations. Hence, the speed of (2 + 1)D algorithm is expected to 

e even higher in deeper neural network models ( Fig. 1 ). 
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